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A B S T R A C T

For calculating ion transport in electro-migration experiments in concrete, the pore space is divided between free
pore water and a double layer that compensates the surface charge of minerals lining the pore. The con-
centrations of counter-ions and co-ions in the double layer are averaged in a Donnan layer, which allows to solve
the flux equation of the individual ions. A numerical model is developed for transient states, with the harmonic
mean of the chemical activity coefficients and the physical parameters to adapt cell sizes in zones with high
concentration gradients. Diffusion coefficients of the ions are corrected for temperature and ionic strength with
an empirical equation with three parameters optimized on published transport numbers and specific con-
ductances. The current and the Cl– breakthrough is calculated in an electro-migration experiment with a con-
crete sample. The surface charge is positive in the experiment, enhancing and reducing the diffusivity of anions
and cations.

1. Introduction

The application of an electrical potential gradient of a few hundred
V/m on a concrete sample enhances the diffusion of charged species by
orders of magnitude and facilitates the determination of the diffusion
coefficient of Cl− and other species in concrete samples. Analytical and
numerical models can be used to extract the transport properties from
the electrical current or by analyzing the Cl− throughput [1–3]. How-
ever, to model both the Cl− breakthrough and the current is still a
challenge, as can be illustrated with an experiment by Friedmann et al.
[4] shown in Fig. 1. In the experiment, a concrete sample was cured and
equilibrated with Na, KOH solution, and the same solution was placed
in the anode and cathode reservoirs at the column ends. A 3 V gradient
was applied over the 1 cm sample, and, after 44 h, NaCl was added to
the cathode reservoir. The current falls when NaCl is added, and in-
creases again a few hours later. Fig. 1 shows the measured current
density and the Cl− increase in the anode reservoir over time, and
model calculations with the Nernst-Planck equation.

The Cl− increase in the anode reservoir allows to calculate the ef-
fective diffusion coefficient of Cl−, De,Cl = Dw,Cl × ε / G, where ε is the
porosity, Dw is the diffusion coefficient in water, and G is the geome-
trical factor that corrects for the tortuosity of the porous medium.
Alternatively, the current can be used to find these transport properties
[2,4,6,7]. The resulting De values (in 10−12 m2/s) for the experiment
shown in Fig. 1 are 25.6 ([4], Eq. (15)), 23.5 [5], and 12.7 [2]. Un-
fortunately, such differences are not uncommon and the incorrect

number can permeate through the literature [3].
In Fig. 1, the full and dashed lines are calculated with Krabbenhøft

and Krabbenhøft's number for ε / G, and the increase of Cl− is well
modeled. However, the calculations were done with porosity of 1, thus,
with the apparent diffusion coefficient. If carried out with a porosity of
0.24 (obtained by Narsilio et al., [2]) and the geometrical factor is
adapted to keep De,Cl = 23.5 × 10−12 m2/s, the current density is the
same in the first 44 h since the system in that period is in steady state
with a uniform Na,KOH solution throughout. However, when NaCl is
added, the current change and the Cl− breakthrough arrive four times
earlier because the geometrical factor is four times smaller (model lines
with ε = 0.24 in Fig. 1). For transient conditions, the water-filled
porosity must be used in a numerical model, and the effective diffusion
coefficient may be more in line with Narsilio's number.

On the other hand, the modeled current is smaller than measured,
which suggests that the factor ε / G is higher. In that case, Cl− would
arrive even earlier, and the breakthrough is then retarded by sorption
or ion exchange [8–10], or by mass-exchange with stagnant or un-
connected water [11–16] since the capillary porosity, for the w/c = 0.7
ratio in this experiment, may be higher than 0.24 [17]. In addition,
when comparing current and Cl− breakthrough, the changes of the
diffusion coefficients with solution composition and the accompanying
variations of the transport numbers (the fraction of the current carried
by the ions) must be accounted for [18,19].

Before discussing the details needed for modeling, it is helpful to
consider what happens in the experiment shown in Fig. 1. First, when
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the potential is applied on the sample, the modeled current remains
constant, whereas the measured current increases with time, probably
as result of chemical reactions of cement minerals [20,21]. Dissolu-
tion of portlandite is relatively quick [22–24], which increases the
concentrations of Ca2+ and OH– in the pore water and thus, the current.
But, if the dissolution reaches equilibrium too quickly, the Ca2+ and
OH– concentrations are fixed in the column, providing steady state
conditions that will not produce the gradual current increase in time
that the experiments show.

Second, when NaCl is added to the cathode reservoir, the current
falls, and the reason is known [4,5]: Cl− enters the column by both the
concentration- and the electric potential-gradient, while the diffusion of
Na+ is counter to the electric potential-gradient. This implies that, in
the beginning, the total anion concentration is limited by the original
cation concentrations in the column. The conductivity is reduced when
OH– is partially replaced by Cl− while the total anion concentration
remains the same because Cl− has a smaller diffusion coefficient than
OH– (see [5] for instructive calculations). When the Cl− front arrives at
the anode-end, the current cannot go down further, but it can increase
because a slow diffusion of Na+ augments the total concentrations in
the column. Fig. 1 shows that the model overestimates the increase rate
of the current density in that part of the experiment.

One possible explanation for the much slower increase rate of Na+

is exclusion of cations from part of the pore space [5,25]. Ion exclusion
originates from the surface charge of minerals, which creates an elec-
trical double layer in the pores in which counter-ions accumulate and
co-ions are excluded relative to ‘free’ water that is charge-neutral. Of
the major cement minerals, AFm is an anion exchanger [26,27] and
portlandite sorbs Cl−, at least when the concentration is below 1 M
NaCl [9], and these minerals have a positive surface charge at the pH of
the experiment [9]. The surface charge on CSH is primarily a function
of the Ca2+ activity, with the isoelectric point (where the surface is
without charge) attained when the Ca2+ activity is about 0.0015 [28],
and this mineral probably has a negative surface charge in the experi-
ment. Exclusion of cations means that the pore circumference is posi-
tively charged, and that the concentration of OH– is higher in the
electrical double layer than in ‘free’ pore water. A higher concentration
of OH– in the concrete pores may explain the higher measured than
modeled current, and a model for calculating it is the subject of this
paper.

The proposed model uses the Nernst-Planck equation for calculating
the flux, which accounts for the effects of both chemical-potential and

electrical-potential gradients in transport processes. For the steady
state, the calculations can be done by hand. For transient states, the
equation is solved with finite differences, programmed in PHREEQC
[29], with the non-linear distribution of the electrical potential ob-
tained from Ohm's law. Furthermore, parameters are derived for cal-
culating the temperature and ionic strength dependence of the trans-
port numbers of individual ions. The model is applied to calculate the
current and Cl− breakthrough in Friedmann's experiment.

2. Finite difference solution for electro-migration

The Nernst-Planck equation for the flux of a solute species is:

⎜ ⎟= − ⎛
⎝

+ + ⎞
⎠

J D c
x

c
γ

x
z c

T
ψ
x

d
d

d ln
d

F
R

d
di i

i
i

i
i i

(1)

where Ji is the flux of solute i (mol/m2/s), Di is the diffusion coefficient
in the solution (m2/s), c is the concentration (mol/m3), x is the distance
(m), γ is the activity coefficient (−), zi is the charge number of i (−), F
is the Faraday constant (96 485 C/eq), R is the gas constant
(8.3145 V·C/eq/K), T is the absolute temperature (K), and ψ is the
electrical potential (V). Chemical models use molality (mol/kg H2O) as
the temperature- and pressure-independent concentration unit, here
assumed numerically equal to molarity (mol/dm3) that is in the flux
equation.

In transient states, the concentrations change by:
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where qi is the concentration in the solid (mol/m3 H2O), which changes
as a result of mineral reactions, sorption and ion exchange, and ex-
change with stagnant zones.

2.1. Concentrations in free and charged pore water

If the pores are lined with minerals that have a surface charge, the
concentrations of the charged ions vary gradually from the surface, and
the value for ci in Eq. (1) varies accordingly. Appelo and Wersin [30]
simplified the resulting complications for a transport model by sub-
dividing the pore into a charge-neutral, ‘free’ water part, and a Donnan
layer as shown in Fig. 2.

The concentrations in the Donnan layer are a function of the con-
centrations in the free pore water and the surface charge that must be

Fig. 1. Current density and Cl increase in the anode reservoir in
Friedmann's [4] experiment with w/c= 0.7. The model lines are
calculated with the parameters from Krabbenhøft and. Krabbenhøft
[5] (ε/G = 0.0116, ε= 1) and with porosity ε= 0.24 from Narsilio
et al. [2] (ε/G= 0.0116).
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neutralized. The charge balance in free pore water is:

∑ =z c 0i free i, (3)

In the Donnan layer the charge balance is:

∑ + =z c ν Su 0i DL i DL, (4)

where vDL is the volume of the Donnan layer (m3, taken equal to Mg
water), and Su is the surface charge (mol). The concentrations in free
water and the Donnan layer are related by the Boltzmann equation:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

=c c
z ψ

T
c gexp

F
RDL i free i
i DL

free i DL i, , , , (5)

where ψDL is the potential in the Donnan layer (V). Inserting Eq. (5) in
Eq. (4) allows to find ψDL for given cfree and Su values, and then, to
obtain the concentrations in the Donnan layer.

2.1.1. Illustration: calculating sorbed Na+ from concentrations in the
Donnan layer

When, in an experiment, water is removed from a suspension by
centrifuging or filtrating, the ions in the Donnan layer are part of what
is ‘sorbed’. The quotient of the excess moles in the Donnan layer and the
moles in the solution can be compared with measured distribution
coefficients, and it is of interest to also compare the Donnan simplifi-
cation with results obtained by integrating the concentrations in the
electrical double layer using the Gouy-Chapman equations.

For example, the distribution coefficient of Na+ on CSH [31] can be
modeled following the approach of Haas and Nonat [32–34 Fig. 8],
taking C0.83SH for which the solubility is well-established [35], add a
surface complexation model [28], CaO to increase C/S to the 0.85 of the
experiment, and then react it with 0.3 M NaOH solution (Table 1).

At the high pH of the NaOH solution, the surface complex Si_OH
dissociates and associates with Ca2+ into Si_OCa+, thus lowering the
solute concentration of Ca2+. This enhances the dissolution of CSH by
orders of magnitude and the silicate anions contribute significantly to
the alkalinity. The major ions in solution are Na+, OH−, and H2SiO4

2–

(Table 1) and their concentrations were calculated as a function of
distance from the surface with matlab template files ([36], p. 293), or
with the Donnan option using PHREEQC. In all cases, the concentra-
tions in the double layer balance the same negative charge of
−44.7 meq/L on the surface.

The traditional Gouy-Chapman picture is presented in Fig. 3A, with
concentrations from the surface (x= 0) to the point where the poten-
tial is virtually 0. The Gouy-Chapman equation for the potential at the

surface is:
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where Fσ is the surface charge (C/m2) and Is is the ionic strength (mol/
L). However, the equation is for single-charged ions and the ionic
strength has been introduced conventionally as a general measure of
the concentrations [36, p. 292]. The presence of a small concentration
of the double-charged silicate anion requires adjustment of ψ0 to
−0.078 V for balancing the surface charge in Fig. 3A. It can be noted
that the concentration of the anions and of Na+ decreases and in-
creases, respectively, towards the surface, demonstrating that the sur-
face charge is balanced by a surplus of counter-ions (Na+ is ‘sorbed’)
and a deficit of co-ions (which are ‘negatively sorbed’). At the surface,
the Na+ concentration is unlikely high since the ions are considered to
be point charges.

Fig. 3B shows the results when an ion-size parameter is introduced
that limits the approach to the surface (here equal to the ion-size
parameter (a) in the Debye-Hückel equation), and when integrating
over 2 Debye lengths, nD = 2 [37], from the smallest a = 0.35 nm for
OH−.

The Debye length (m−1(mol/L)-0.5) is:

=
×
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where εw is the dielectric permittivity of water (6.94 × 10−10 F/m at
25 °C).

This case needs, for balancing the surface charge, ψ0 = −0.085 V.
Fig. 3C presents the concentrations of the Donnan model with nD = 2.

The concentrations in the double layer in Fig. 3A and B can be in-
tegrated to an average concentration cDL,i like the one for the Donnan
layer, and the overall concentration in a volume that contains fractions
of free water and electrical double layer water is:

= + −c f c f c(1 )i free free free DL i, (8)

where ci is equal here and in the Nernst-Planck equation.
In the example, cNa+ = 296 mM, equal to NaOH added. The input-

variables are cfree, Na+ = 259 mM and a surface charge of −44.7 mM,
and thus, (296 – 259 + −44.7) =−7.7 mM is balanced by negative
sorption of anions. The calculated overall concentrations of Na+ are
identical to the expected number in all three cases, within the accuracy
of the integration. Thus, the Donnan simplification will give the same
result for the c term in the Nernst-Planck equation as the numerical
integrations, while being much more stable and much less time-con-
suming.

Finally, Fig. 3D shows the measured distribution coefficients for
Na+ and calculated with the Donnan model. The calculated distribution
coefficient follows from Eq. (8):

=
− −
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The Kd has been calculated with 2 and 0.02 Debye lengths for the
thickness of the double layer. The first case is representative for CSH in
suspension in Hong and Glasser's experiment, the second one can refer
to CSH from which external water has been removed, leaving the
counter–ions only. The distribution coefficient of Na+ is higher than in
the first case where the negative adsorption of anions contributes to
charge-balancing.

The trend of the modeled Kd with Na+ concentration is to start
small, increase to a maximum at 15–30 mM NaOH, and decrease at
higher concentrations. It follows the reactions at the surface and the
concentrations of Ca2+ and Na+ in solution. At low Na+ concentration,
Ca2+ balances the surface charge. When the Na+ concentration and the
pH increase, Ca2+ is complexed on the surface and Na+ takes over. The
increase of the Si_OCa+ complex with increasing pH decreases the

Fig. 2. Dividing the pore space in concrete into two fractions:
ffree, uncharged pore water, and
fDL, a Donnan layer (DL) that neutralizes the surface charge of concrete minerals.
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surface charge, so that less Na+ enters the double layer and Kd de-
creases. The measured data seem to confirm the model trend, but the
measured Kd's are somewhat higher than modeled. However, the sur-
face complexation model is based on CSH that shows a distinct X-ray
pattern [28], whereas CSH in the experiment is amorphous. It is not
unlikely that the surface sites are higher in the amorphous form, which
can explain the higher observed Kd.

2.2. Harmonic mean solution of the parameters in the transport equation

The Nernst-Planck equation can be solved with a split-operator
scheme in which, for a time step, first diffusive transport is calculated
with central differences, and then the chemical reactions [36]. For the
transport part, the diffusion coefficients are corrected for geometric
properties of the porous medium, and the mass transfer is obtained by
multiplying with the surface area available for diffusion. When these
physical properties vary from cell to cell, the mass transfer can be
compared inside two cells j and k towards the interface jk:
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where Mi is the mass transfer of solute i (mol/s), εj is the porosity of cell
j (−), A is the surface area of the cell (m2), G is the geometrical factor
that relates the diffusion coefficient in pure water and in the porous
medium (−), ci,j is the concentration in cell j (mol/m3), x is the cell-
length (m), and subscript jk indicates the interface of cells j and k. At
steady state, Mi,j =Mi,k, which permits to solve for ci, jk. The result is
that the harmonic mean of the cells' properties appears in the equation
that gives the mass transfer from cell j to k:
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where ai,k–j is the correction for activity coefficients,
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where bj and bk are defined by the cell lengths and the bipartite division
of the pore space into free and Donnan water with Eqs. (5) and (8),
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and similarly for bk, where ffree is the fraction of free pore water,

= +f ν ν ν( )free free free DL (15)

and finally,

= +ε A ν ν x( )j j free DL j j (16)

In Eq. (12), ci jk, is some average of ci,j and ci,k, which also can be
calculated for steady state. However, a simple arithmetic average,

= +c c c( ) 2,i jk i j i k, , , was adopted because it provides good agreement
with an analytical solution and a model with different cell-lengths
(shown later). The harmonic mean in Eq. (12) is divided by 2, since bj
and bk are calculated for xj and xk halved, while the concentration- and
potential-gradients are calculated over the sum of the two halved dis-
tances. The Boltzmann factor, gDL,i in Eqs. (5) and (14), is divided by
ηrDL, a factor to set the viscosity of the Donnan layer different from free
pore water.

2.3. The electrical potential

Without external electrical field, ΣziMi = 0, and ψk − ψj can be
solved from Eq. (12) [38]:
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where ei,k–j maintains electro-neutrality in the solutions:
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If an electrical potential field is applied, the resulting current comes
partly from the chemical potential gradient and partly from the electric
potential gradient:

= = +I z M I IF Σ ( )jk i i jk d jk e jk, , (19)

Table 1
Equilibria, reactions and calculated concentrations for the experiment of Hong and Glasser [31] in which CSH dissolves in 0.3 M
NaOH solution.

Equilibria and reactions log K mmol/L

(CaO)0.83SiO2(H2O)0.97 + 0.86 H2O = 0.83
Ca2+ + H3SiO4

− + 0.66 OH−
−8.0a 534

Si_OH = Si_O− + H+ −12.3b 266
Si_OH + Ca2+ = Si_OCa+ + H+ −9.4b

CaO + 2 H+ → Ca2+ + H2O 0.31
NaOH→ Na+ + OH− 296

Concentrations (mmol/L)

OH− Na+ Na+sorbed H2SiO4
2– H3SiO4

− (Ca2+ + CaOH+) (Si_O− − Si_OCa+)
experimentc 247d 236 60 0.09
calculatede 232 259 37 11.4 4.3 0.008 −44.7f

a Lothenbach et al. [35].
b Viallis-Terrisse et al. [28], 4.8 sites/nm2, surface area 500 m2/g CSH.
c Hong and Glasser [31], 66.7 g CSH/L water, CSH with 14% water.
d The titration of OH– probably includes silicate anions.
e Calculated with PHREEQC [29].
f The surface charge is Fσ= −44.7 × 10−3 F / (500 × 66.7) =−0.129 C/m2.
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where Ijk is the current from cell j to k (A) and subscripts d and e in-
dicate the purely diffusive and the electrical component. It can be as-
sumed that the current is equal for all cells (thus, no charge build-up in
the cells, see [5]), which allows to calculate the potentials with Ohm's
law. The resistance for electrical transport is:

=R ψ n I(Δ )jk e jk, (20)

where Rjk is the resistance (Ohm), Δψ is the electrical potential differ-
ence over the sample (V), and n is the number of cells. With the cells in
series,

∑ =
=

I R Δψ
j

n

jk jk
0 (21)

The equation can be solved for Ie,01 with Eq. (19) with the Id values
calculated by the model:

∑ ∑+ − =
= =

I R I I R Δψ( )e
j
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jk
j

n

d d jk jk,01
0 1

,01 ,
(22)

With the potential ψ0 given in boundary cell 0, the potential in the first
cell becomes:

= +ψ ψ I Re1 0 ,01 01 (23)

With Ie,12 = Ijk – Id,12, the potential in the second cell is
ψ2 = ψ1 + Ie,12R12, and similarly for the other cells.

3. The individual contributions of ions to the current

The contribution of an ion to the specific conductance is [19,39]:

=Λ
z

T
D

F
Rm i
i

i,

2 2

(24)

where Λm,i is the molar conductivity [S / m / (mol/dm3)]. The specific
electrical conductance (SC) of the solution is the sum of the molar
conductivity of the solutes multiplied with the concentration:

=SC cΣ (Λ )m i i, (25)

Fig. 3. Modeled concentrations and potential in the electrical double layer on the surface of C0.85SH as a function of distance, and the distribution coefficients of Na+ in experiments of
Hong and Glasser [31].
(A) Gouy-Chapman, going from the surface to where the potential is ≈0;
(B) with a limiting approach distance for the ions and integrating over 2 Debye lengths;
(C) the Donnan layer, also for 2 Debye lengths.
(D) The measured and modeled distribution coefficient of Na+ in the experiments of Hong and Glasser, calculated with 2 and 0.02 Debye lengths.
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It can be compared with the specific conductance from Ohm's law:

= =SC R I E1 , (26)

where R is the resistance (m/S), I is the current density (Ampère/m2),
and E is the electric field (V/m).

The molar conductivities change with concentration and the com-
position of the solution. Fig. 4A shows the measured specific con-
ductance of NaCl solutions as a function of concentration and calculated
with the Di's of Na+ and Cl− presumed constant at their infinite dilution
value, and with the corrections proposed in this paper and by Snyder
et al. [18]. It is evident that the constant-D model overestimates the
conductance substantially, and increasingly with concentration. For
molalities of 0.1 and 0.6, representative for the experiment in Fig. 1, the
calculated SC's are 1.2 and 1.4 too high, respectively. In addition, the
presence of other salts affects the molar conductivity of the ions. Fig. 4B
presents the contribution of Cl− to the SC of binary solutions with H+,
alkalis, and alkaline earths. At concentrations< 1 M, the contribution
is similar for the various salts, but at higher concentrations it diverges
for different alkali-chloride salts and HCl, for the same Cl− con-
centration. Normally, the differences can be attributed to complex
formation of cations and anions, which reduces the conductance of the
solution [19]. However, it is noted that Cl− in NaCl solution is less
conductive than in KCl solution, and it is doubtful that Na+ forms a
complex with Cl− where the less hydrated K+ does not. On the other
hand, at concentrations above 1 M, the viscosity of NaCl increases much
more rapidly than that of KCl, and the viscosity of the solution (rather
than of pure water) could explain the differences in the overall SC that
are difficult to model with the Onsager-Falkenhagen-Fuoss-MSA for-
mulas [19,40,41]. However, Fig. 4B suggests that the relation between
specific conductance and concentration may be more straightforward
for concentrations smaller than 1 M.

3.1. Concentration and temperature dependence of the diffusion coefficients

As shown in Fig. 4, the one-parameter equation of Snyder et al. [18]
gives quite good results for Na+ and Cl−, but there are deviations for
other ions, and it is desirable to have the corrections available for more
solutes. With two coefficients a1i and a2i, the diffusion coefficients can
be made a function of the ionic strength Is:
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where D0
T is the diffusion coefficient at infinite dilution at T Kelvin, A is

the Debye-Hückel A parameter (0.51 (mol/dm3)−0.5 at 25 °C), and κa is

=
+
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i

s

2
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Eq. (27) follows Kohlrausch's law and similar relations reviewed in
[39], except for the exponent that avoids negative Di's, and the Debye-
Hückel parameters that are present in all the theoretical equations
[19,39,40].

The diffusion coefficients are corrected for temperature by a relation
proposed by Smolyakov [41]:
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where η0T is the viscosity of pure water (Pa·s) at T Kelvin and di is a
coefficient. The exponential term dampens the temperature dependence
of the diffusion coefficient, which is smaller than follows from the
change of viscosity with temperature.

The coefficients a1i and a2i were optimized with the parameter op-
timization program PEST [48], first for Cl− by using the transport
numbers of NaCl solutions because the data for that salt are most
complete and reliable [44]. For comparison, Table 3 gives the standard
deviations of the calculated transport numbers of Cl− in other solu-
tions. With the numbers for Cl− fixed, the coefficients a1i and a2i for
other ions can be found from the conductance data at 25 and/or 20 °C
referenced in Table 3. The coefficients a1i and a2i are assumed tem-
perature independent. Values of di were obtained, first for Cl− from
D0
Cl− values compiled by [49], and then for the other ions from the

change of Λ0
m,i with temperature by using data from [19,50]. The

coefficients are listed in Table 2. If undefined for a species, the sug-
gested numbers are di = 0, a1i = 1.6 and a2i = 4.73, based on a set of
SC's of natural waters provided by Stuyfzand (pers. comm.).

Fig. 5 shows the correction factors for the diffusion coefficients of
Na+, K+, OH– and Cl− as a function of the ionic strength, with the
decreasing order for OH−, Cl− and Na+ that follows the diffusion
coefficient at infinite dilution according to Onsager theory [19]. K+ is
the exception, and it reveals the shortcoming of the correction method.
The D0 of K+ is slightly smaller than that of Cl−, and the K+ line should
lie below the Cl− line. The viscosity of KCl solution is almost equal to
the viscosity of pure water up to 2 M KCl, and the molar conductivities
of both K+ and Cl− are almost independent of concentration up to 2 M
KCl (cf. Fig. 4). Thus, when the K+ conductivity is estimated from the

Fig. 4. (A) The measured specific conductance (SC) of NaCl solutions at 25 °C [42] and calculated with the models proposed here and by Snyder et al. [18], and with the diffusion
coefficients of Na+ and Cl− fixed at their infinite-dilution values.
(B) The contribution of Cl− to the SC of Cl-salt solutions at 25 °C calculated from transport numbers in HCl [43], LiCl [19], NaCl [19,44], KCl [19,44], MgCl2 [45], CaCl2 [46,47]. The full
and dashed lines are from the model proposed in this paper and from [18], for NaCl and MgCl2 in red and blue, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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conductivity of KCl solutions, it is increased to compensate for the
smaller Cl− conductivity that comes from the NaCl solutions.

4. Code validation

Krabbenhøft and Krabbenhøft [5] provided an analytical solution
for the steady state of Friedmann's experiment shown in Fig. 1, that is
compared with the numerical calculation in Fig. 6. The calculation is
for the final stage of the experiment when the concentrations have
stabilized after NaCl was added to the cathode reservoir. The two
boundary solutions contain 25 mM NaOH and 83 mM KOH, with
500 mM NaCl extra in the cathode cell, and the imposed electric field is
3 V on a 10 mm column.

The numerical model gives an excellent agreement with the analy-
tical solution when the cells are refined at the column ends where the

concentrations change abruptly with distance. The results shown in
Fig. 6 were obtained with 10 cells of 0.1 mm length at the ends, and 5
cells of 1.6 mm in the middle, thus, 25 cells for the 10 mm sample. It is
of interest to note that in most of the column, the ratios of the con-
centrations are determined by the ratios in the source reservoir, thus,
the anode reservoir for the cations (K / Na = 83 / 25 = 3.32), and the
cathode reservoir for the anions (Cl / OH= 500 / 108 = 4.63). For
example, in the middle of the column, at 5 mm, K / Na = 275 / 82.9
(=3.32), and Cl / OH= 294.4 / 63.6 (=4.63). The ratios follow from
the constant fluxes and the time-invariant concentrations for an ion at
each point in the column in the steady state.

5. Application

It was noted that the measured current requires a smaller geome-
trical factor than the one for calculating the Cl− breakthrough in
Friedmann's experiment in Fig. 1. Can a pore with a Donnan layer ex-
plain the discrepancy?

With dci / dx= 0, the current density is:

∑= −I
T

ε
G

z D c
dψ
dx

F
R i i i

2
2

(30)

In the Donnan pore, the concentrations are (Eqs. (5) and (8)):

= + − = + −c f c f c c f f g(1 ) ( (1 ) )i free free i free DL i free i free free DL i, , , , (31)

According to the Boltzmann Eq. (5), the gDL's invert for oppositely
charged ions with the same charge number. Then, with only single-
charged ions in solution, Eq. (4) results in a quadratic equation that can
be solved for gDL,i:

+
∑

− =g Su
ν c

g
2

1 0DL i
DL i

DL i,
2

, (32)

Furthermore, vDL and ffree can be found for a number of Debye
lengths (nD) for the thickness of the Donnan layer, and with the pore
radius estimated from:

= = ×r V A V ε A2 2 ( ρ )c c cpore pore 1 (33)

where V1 is the volume of 1 cm3 cement with the associated water and
aggregate (=1 + ρc × w/c + ρc / ρs × s/c), εc is the capillary porosity,
Ac is the specific surface of the cement minerals (assumed 100 m2/
(g c)), and ρc and ρs are the densities of the cement and aggregate (3.2
and 2.6 g/cm3, respectively). The surface area of the aggregate is ne-
glected.

Taken together, the fraction of free pore water is:

= −f r n κ
r

( )
free

D
2

2 (34)

Thus, for the first 44 h of Friedmann's experiment, the current can
be calculated as a function of the surface charge with the parameters
given in Table 4, where ε / G = 0.0116 [5]. The result is plotted in
Fig. 7A with nD = 2 and 4. First, it can be noted that the current is
smaller than in Fig. 1 when the surface charge is zero, because the
diffusion coefficients are lower when they are corrected for the ionic
strength of the solution. Second, less surface charge is needed to obtain
a current density of 11 A/m2 when the charge is positive instead of
negative. The reason is that OH−, with the highest diffusion coefficient
of the ions that are present, increases in concentration in the Donnan
layer of a positive surface and gets a higher overall concentration in the
pore water. Third, when the negative surface is small, the current is
smaller than without surface charge. This is because OH– is rejected
from the surface and thus has a lower overall concentration in the pore.
When the surface turns more negative, the higher concentration of
cations in the Donnan layer compensates the loss of OH– and lets the
current increase. Finally, increasing the size of the Donnan layer,
equivalent to decreasing ffree, lowers the current. This follows from
taking the derivative of Eq. (31) with respect to ffree for both cations and

Table 2
Diffusion coefficients of selected solute species at 25 °C and infinite dilution, and coef-
ficients for calculating their temperature- and ionic strength-dependence. Data sources,
concentration ranges, and standard deviations of the model are given in Table 3.

Species D0
T=298/10−9 da a1a a2a

H+ 9.31 763 0.46 0
Na+ 1.33 122 1.52 3.7
K+ 1.96 395 2.5 21
NH4

+ 1.98 312 0.95 4.53
Mg2+ 0.705 111 2.4 13.7
Ca2+ 0.793 97 3.4 24.6
OH− 5.27 553 0.52 0
Cl− 2.03 194 1.6 6.9
SO4

2− 1.07 34 2.08 13.4
NaSO4

− 1.33 0 0.57 0
KSO4

− 1.5 0 0 0
HCO3

− 1.18 0 1.43 0
CO3

2− 0.955 0 1.12 2.84
NaCO3

− 1.2 0 0 0
NO3

− 1.90 184 1.85 3.85

a a1, a2 and d in Eqs. (27), (28) and (29).

Table 3
Data of transport numbers of Cl− and of molal conductance of salts, used for optimizing
the coefficients in Table 2, and standard deviations of the fit.

Species Salt ma / (mol/L) na s.d. / %a Data sources

Cl− NaClb 0.01–6 23 0.9 [19,44]
HCl 0.005–2 10 3.6 [43]
KCl 0.001–0.5 9 2.9 [19,44]
MgCl2 0.2–3.7 11 2.9 [45]
CaCl2 0.0025–0.1 13 3.3 [46,47]

H+ HCl 0.005–2 10 1.5 [51]
Na+ NaCl 0.0001–4 47 1.3 [19,42,52]
K+ KCl 0.1–1.3 22 1.1 [42,52]
NH4

+ NH4Cl 0.001–1 35 1.5 [50]
Mg2+ MgCl2 0.0001–2.1 21 2.4 [53]
Ca2+ CaCl2 0.0001–2 19 4.3 [19,50,54]
OH− NaOH 0.1–1.4 11 1.0 [55]

KOH 0.09–1.2 13 1.4 [55]
SO4

2–c Na2SO4 0.02–1.7 23 0.7 [56]
K2SO4 0.03–0.6 20 2.6 [55]

HCO3
–d NaHCO3 0.06–0.8 12 3.0 [55]

Na2CO3 0.05–1.7 12 9.3 [55]
KHCO3 0.05–1.3 11 6.0 [55]
K2CO3 0.04–0.65 9 6.1 [55]

NO3
− NaNO3 0.06–7.9 20 4.9 [55]

KNO3 0.05–1.3 11 5.4 [55]

a m = concentration range, n = number of samples, s.d. / %
= 100 − −Λ Λ n(1 ) ( 1)calc obs 2 , where Λ is tCl for transport number calculations of Cl−,
or the sum of the molal conductances of cation and anion in the salt.

b For fitting a1 and a2 of Cl−, NaCl is used; the s.d. for other salts illustrates the de-
viations.

c Includes NaSO4
− and KSO4

−.
d Includes CO3

2− and NaCO3
−.
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anions, which is always positive if only single-charged ions are present.
A surface charge of 0 and the surface charges that give a current

density of 11 A/m2 were introduced in the numerical model, and the
results are shown in Fig. 7B. In all three cases, the model correctly gives
the initial current that is calculated by hand. But when NaCl is added
the curves diverge considerably, and the trends can be related to the
model properties. With a negative surface charge in the model, the
diffusion of Na+ is enhanced and the current rises quickly and to a far
higher level than measured when Cl– has arrived at the anode end
(dotted line in Fig. 7B). When a positive surface charge is added, the
diffusion of Na+ is reduced so that the current levels off to a (pseudo-)
steady state below the measured current. Without surface charge, the
initial current is too small, and the increase rate is too high.

If the Cl− curves in Fig. 7B and Fig. 1 are compared, it can be seen
that the correction of the diffusion coefficient brings the models with a
zero or positive surface charge closer to the observed mole transfer. A
negative surface reduces the accessible porosity for Cl− and lets Cl−

arrive too early. Thus, a negative surface is inappropriate for modeling
electro-migration in this experiment. As regards the zero surface
charge, it is possible to fit the initial current by decreasing the geo-
metrical factor, and counter the concomitant faster arrival of Cl− by
introducing sorption, but it is simply impossible to deal with the con-
sequence that the current increase rate then will go far beyond what is

Table 4
The electro-chemical properties of a Donnan pore in Friedmann's experiment in a 33.18 mL column with w/c= 0.7 and s/c= 0.333. The concentrations are for t = 0 and for t = 44 h,
when 0.5 M NaCl was added to the cathode reservoir.

V1
a εc

b rc Isd ffree Sue Ion Df cfreeg gDL cg Gh Ii

3.65 0.309 7.06 0.108 0.54 21.1 Na+ 1.10 25 0.56 20 26.7 11.0
K+ 1.70 83 0.56 66
OH− 4.83 108 1.78 135

After adding 0.5 M NaCl:
0.608 0.79 21.1 Na+ 0.90 525 0.79 502 26.7 24.2

K+ 1.54 83 0.79 79
OH− 4.29 108 1.26 113
Cl− 1.49 500 1.26 523

a Volume of 1 cm3 cement with water and aggregate (=1 + ρc × w/c+ ρc / ρs × s/c, cm3).
b Capillary porosity from Powers' equation (ρc × w/c – fe × αt) / V1, fe = 1.15 [57] and αt = 0.239 + 0.745 × tanh(3.62 × (w/c− 0.095)) [17].
c Pore radius (nm).
d Ionic strength (mol/L).
e Surface charge (μeq/g cement), Su in Eq. (32) divided by g cement in the column.
f Diffusion coefficient at 25 °C, corrected for ionic strength (m2/s / 10−9).
g Average concentration in pore water (mol/m3 water).
h Geometrical factor (−) for εc / G = 0.0116 [5].
i Ampère/m2 with dψ / dx = 300 V/m.

Fig. 5. The correction factor for the ionic strength dependence of the (electro-)diffusion
coefficient of Na+, K+, OH– and Cl−.

Fig. 6. (A) Steady state concentrations of Na+-, K+-, Cl−- and OH−-concentrations with distance in Friedmann's experiment. (B) The steady state potential over the sample. In (A) and
(B), lines from the analytical solution, + symbols from the numerical model.
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measured.
The current from the model with a positive surface is also not sa-

tisfying yet. It does not match with the current increase that starts when
the electrical field is applied, it increases sharply instead of gradually
when Cl− breaks through, and after that, it remains below the mea-
sured current. However, the discrepancies are manageable; they can be
related to kinetic chemical reactions of cement minerals and to ex-
change of water in mobile and immobile zones as will be shown in more
complete model calculations in another paper.

6. Discussion

The proposed model has a bipartite division of the pore space with a
charged part in a Donnan layer (DL) on the surfaces lining the pore, and
an uncharged part of ‘free’ pore water. In the DL, the surface charge is
compensated by an increase of counter-ions and a decrease of co-ions
relative to the free pore water. It allows calculating the diffusion of ions
and the current in electro-migration experiments easily, but the ques-
tion is how well it applies to the complicated pore space in a concrete.
Purely computationally, the average concentrations in the DL of a
mixture of ions, with different charge numbers, agree well with what is
calculated by a full, numerical integration of the Gouy-Chapman
equation of the electrical double layer [30]. If the average concentra-
tions in the pore are the same, the Nernst-Planck equation will give the
same results for the flux, irrespective of a further subdivision of the
double layer. However, it is likely that the higher concentrations close
to the surface go hand-in-hand with changing transport properties of
the ions, probably decreasing the diffusion coefficient. Perhaps these
changes in transport properties can be accounted for by modifying the
diffusion coefficients as a function of the ionic strength. Alternatively,
in PHREEQC the viscosity of the DL can be changed relative to free
water (thus affecting all the solutes in the DL in equal manner), or in-
dividual ions can be given an enrichment factor in the DL. The options
may be helpful for modeling detailed experiments, but perhaps they are
unnecessary, since diffusion experiments in clays have shown that the
two-fold division of the pore without these corrections, already gives a
good approximation of the accessible porosity of ions (c / cfree × ε) and

the pore water diffusion coefficient (Dp = D / G) [37,58,59].
It is often assumed in transport models that all the solutes have the

same ε / G factor in porous media although there is abundant experi-
mental evidence from studies with clay minerals and –rocks that the
reality is different [37,58–63], and the DL model offers an approach for
generalizing the variation. The ratio c / cfree gives the difference that
otherwise is attributed to another ε / G, and the ratios change when the
solution compositions change in transient conditions.

From the combination of measured current and effective diffusion
coefficient of Cl− (De = D× ε / G), the DL model can calculate the
overall surface charge of the minerals that line the pores. In the ex-
periment that lies at the heart of this paper, the surface charge is po-
sitive, and estimated at +21 μeq/g c. In a rough calculation, the charge
can be linked with the minerals in the column. From the chemical
analysis in [4], the cement has 41% CSH, which, with the surface
complexation model of [28] and the pore water in equilibrium with
portlandite, gives a charge of −6.8 μeq/g c. If all the positive charge is
attributed to 6% AFm, it is +0.456 meq/g, which is possible given its
structure [27]. For comparison, the charge of the clay mineral smectite
is −0.8 meq/g [36, p. 251].

Two more model aspects in this paper differ from other models for
electro-migration experiments [2,5,64–66]. The diffusion coefficients of
the individual ions are corrected for ionic strength of the solution in
accordance with measured transport numbers and solution con-
ductivities. This correction is done apart from the activity coefficient
correction (γ) for the driving force (∂c / ∂x) in the Nernst-Planck
equation. Thus, if (∂c / ∂x) is assumed zero, the calculated current is
still affected by the ionic strength: the current is smaller for Friedmann's
experiment than when the D's of zero ionic strength are used. Both the γ
and the D correction depend on the electrostatic properties of the so-
lution, so both correction terms contain Debye-Hückel parameters. The
D correction applies well for ionic strengths ~<1 M and for NaCl
solutions up to 4 M, and results in the following corrections: D /
D0 = 0.83, 0.89 and 0.92 for Na+, K+ and OH−, respectively, at ionic
strength of 0.11 (Table 4). Clearly, Nernst-Planck models must use the
diffusion coefficients that conform to reality. Furthermore, when dif-
fusivities are compared in models for the concrete pore structure

Fig. 7. (A) The current density in Friedmann's experiment as a function of the surface charge, with a Donnan layer that has a thickness of 2 or 4 Debye lengths, calculated with the
concentrations and electro-migration parameters of the initial conditions in Table 4. Markers indicate the surface charges used in the model calculations in (B).
(B) Current density and Cl− calculated for Friedmann's experiment with PHREEQC, with surface charges ‘Su’ of 0, −0.093, or 0.021 meq/g cement and nD = 2. The concentrations are
given in Tables 4, and 0.5 M NaCl is added to the cathode reservoir after 44 h. The calculations were done with the modified database phreeqc.dat that contains the concentration- and
temperature dependence of the species' diffusion coefficients from Table 2.
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[3,67], the measured effective diffusion coefficient should be related to
the free water diffusion coefficient at the ionic strength of the solution,
but the relation is complicated if the surface charge is not accounted for
in the model.

The other aspect is that Ohm's law is used for calculating the elec-
trical potential gradient, where other models invoke Poisson's law,
d2ψ / dx2 = −F Σzc / εw [2,5,64,66]. However, the precision of
PHREEQC (and in fact, of any numerical model for calculating chemical
reactions) is not better than about 10−8 mol/m3, implying that d2ψ /
dx2 that is calculated from charge imbalance cannot be more precise
than 1.4 × 106 V/m2. This is twice higher than the maximum in the
various stages of Friedmann's experiment, and insufficient for calcu-
lating the potential. Samson et al. [6] also noted problems with the
numerical model that uses Poisson's law. However, the charge from
Poisson's law is so small [5] that it can be neglected and then, Ohm's
law is a viable alternative.

7. Conclusions

• The division of pore water into a charged Donnan-layer part and an
uncharged, ‘free’ part facilitates the calculation of ion transport in
the charged pores of concrete with the Nernst-Planck equation.

• The charge in the Donnan layer counterbalances the charge of
concrete mineral surfaces that line the pores. Electro-migration ex-
periments in which both the current and the Cl− breakthrough are
measured following the addition of NaCl to the cathode reservoir,
allow estimating the surface charge of the minerals in a concrete
pore. It is positive in Friedmann's experiment [4], where it enhances

diffusion of anions and reduces diffusion of cations.

• In calculations with the Nernst-Planck equation, the diffusion coef-
ficients of individual ions must be corrected for ionic strength of the
solution. This correction also affects the transport numbers of the
individual ions. The proposed correction is generally accurate up to
~1 M, and up to 4 M for NaCl.

• When the diffusivity (the ratio of the porosity and the geometrical
factor) is calculated from experiments, the reference is the diffusion
coefficient at the ionic strength of the solution, not the one at in-
finite dilution. The diffusivities are different for different cations
and anions, and a function of the ionic strength, the pore radius and
the surface charge of the minerals.

• The comparison of experimental and model results suggests a role
for kinetic portlandite dissolution and mobile/immobile water ex-
change.

• The full Nernst-Planck equation has been programmed in PHREEQC,
which now can calculate the current in electro-migration experi-
ments, or the electrical potential in diffusion experiments without
an external electrical field. Input files for calculating Figs. 1 and 3–7
are listed in the Appendix A and are available for downloading.
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Appendix A

Website http://www.hydrochemistry.eu/pub/el_dif/concrete1.zip contains files for calculating Figs. 1 and 3–7, and the composition of the
concrete used by Friedmann with Tennis and Jennings' model. Extract the files, and keep them together in a directory since experimental data are
plotted from files that are expected to be in the same directory as the PHREEQC file. The PHREEQC files should be run with phreeqc.exe from http://
www.hydrochemistry.eu/ph3/index.html.

The files are:
Fig1.phr: calculates and plots the Friedmann experiment with parameters from Krabbenhøft and Krabbenhøft, and from Narsilio et al.
Fig3a-b.zip: Matlab files that integrate the Gouy-Chapman double layer.
Fig3d.phr: calculates the distribution coefficient of Na+.
Fig4a.phr: calculates and plots the specific conductance (SC) of NaCl solutions.
Fig4b.phr: calculates and plots the contribution of Cl– to the SC of various salts.
Fig5.py: python file that plots the ionic strength dependence of Di's of solute species.
Fig6.phr: calculates and plots the steady state analytical solution of Krabbenhøft and Krabbenhøft.
Fig7a.phr: calculates and plots the current density as a function of the surface charge.
Fig7b.phr: calculates and plots Friedmann's experiment with three different surface charges.
Tennis.phr: calculates and plots (Figs. A1 and A2) the composition of Friedmann's concrete as a function of the aluminate hydration with the

model of Tennis and Jennings, 2000, CCR 30, 855.
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Fig. A1. The volume fractions of the components in Friedmann’s concrete with w/c= 0.7 as a function of the aluminate hydration.

Fig. A2. The degree of hydration of the clinker minerals in Friedmann’s experiment.
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