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ABSTRACT

Appelo.C. A_J., Hendriks, J. A. and van Veldhuizen, M., 1993. Flushing factors and a sharp front solution
for solute transport with multicomponent ion exchange. J. Hydrol., 146: 89-113.

Three cation exchange equations due to Vanselow, Gapon, and Gaines and Thomas arc often used in
transport models of ions subject to ion exchange with the solid aquifer maitrix. The equations differ in the
cenvention [or the activity of adsorbed ions, and give different isotherm slopes for binary ion exchange
pairs which influence caleulated transport. In the binary case, the velocity of a composition is inversely
related 10 the slope of the isotherm. The term ‘fushing factor’ is introduced as an inverse velocity that
permits the easy construction of elution curves. In the multicomponent case, the flushing factors are found
as eigenvalues, An analytical solution is oblained for multicomponent (heterovalent) transport with shock
fronts that can be validated with the flushing factor theory. This analytical solution is applied to the
freshwater injection in a brackish water aquifer presented by Valoechi and coworkers. The results indicate
that the Gaines and Thomas, and Vanselow conventions can adeguately describe observed data with
constant exchange coelficients for the binary exchange reaction pairs. The Gapon convention gives an
S-shaped isotherm for multivalent ions that can easily lead te selectivity reversals; such selectivity reversal
has not becn observed.

INTRODUCTION

Multicomponent ion exchange is an important aspect of modeling of
transport in aquifers and soils (Valocchi et al., 1981; Appelo et al., 1990; cf.
Grove and Stollenwerk, 1987, and Mangold and Tsang, 1991, for reviews).
Ion exchange is of importance where groundwater quality changes, as a result
of saltwater intrusion, water injection or pollution. Different conventions

Correcspondence to: C. A. 1. Appelo, Institute for Earth Sciences, Free University, De Boetelaan
1085, 1081 HV Amsterdam, Netherlands.
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have been proposed to describe the cation exchange process, the three most
commonly used being due to Vanselow (1932), Gapon (1933), and Gaines and
Thomas (1953). The three conventions have also been applied to model
transport with cation exchange. For example, the data of Valocchi et al.
(1981) have been modeled with the Gaines and Thomas convention by
Valocchi et al. (1981), with the Vanselow convention by Miller and Benson
(1983}, and with the Gapon equation by Van Ommen (1985). Data fit appears
to be equally good for all three. However, for soil scientists the choice among
these conventions is often determined by the different fit they provide for
experimental data (Vanselow, 1932; Van der Molen, 1958; Evangelou and
Phillips, 1988), and the three conventions are known to yield different
isotherms for binary, heterovalent, ion pairs (Bolt, 1967).

The shape of the isotherm is of importance, since chromatographic theory
has demonstrated that transport of solutes is profoundly influenced by this
parameter (Sillen, 1951; Helfferich and Klein, 1970; Charbeneau, 1981: Rhee
etal., 1989). It is therefore of interest to study the effects of the three exchange
conventions, and we use chromatographic theory to obtain analytical
solutions to describe transport of (heterovalent) ions, subject to ion exchange.
First, the formulae to calculate multicomponent equilibria for the three
conventions mentioned are presented, Then, we illustrate the importance of
the slope of the isotherm in the calculation of transport. An analytical solution
for shock fronts allows an easy comparison of the three conventions, and is
used to examine the classical field injection experiment described by Valocchi
et al. (1981).

Conventions for ion-exchange equations

The equations for calculating binary ion exchange can be found in
textbooks by Sposito (1981) and Bolt {1982). Consider the ion-exchange
reaction

0.5Ca’* +Na-X>Ca,y;-X+Nat ' (1
for which a mass-action equation can be written (Gapon, 1933)

[Na™][Cay;-X]
[Caz+ ]O.S [Nd-X] (2)

G —
K CayNa —

where [{] is the activity in solution, [-X] is the activity on the exchanger
surface, and K€, is the equilibrium coefficient. An alternative description
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of the exchange reaction is
0.5Ca’* +Na-X«0.5Ca-X, +Na* (1a)

for which the mass-action equation is (Kerr, 1928; Vanselow, 1932; Gaines
and Thomas, 1953)

[Na*J[Ca-X,]**

[Ca* [Na-X] G2)

T
K© Ca\Na —

Reaction (1) uses the exchange sites filled with a given cation as the basis for
calculating the activity of the exchangeable cation (Gapon convention).
Reaction (la) uses the exchangeable cations as the basis for their activity
{Gaines and Thomas or Vanselow convention). Activities on the exchanger
are expressed as fractions, which can be calculated on a mole or an equivalent
basis. Normally the exchangeable fractions will not be equal to activities, and
activity coefficients are used as correction terms

[-X.]1 = B¢ ' | ()

where B, is the fraction on exchanger, ¢, is the activity coefficient, used as a
non-ideality correction term, and z; is the charge of ion /. From measured
guantities (usually in mEq. (100 g) '), the amounts of exchangeable cations
are more conveniently expressed in units of equivalents per decimeter cubed
of porewater by multiplying mEq. (100g)~! with p, /(100 €), where p,, is the
bulk density (kg dm™*) and € is the porosity (a fraction).

In a multicomponent system the exchangeable fractions are calculated, for
the Gapon, and the Gaines and Thomas equation

(i-Xz-)
= : 4
B CEC @
and for the Vanselow equation
(i-X, )z '
K AT | ©
= z i .
[N A

where (i-X, ) or (i) . -X) is exchangeable i (Eq. dm™>), z; is the charge of i, CEC
is the cation exchange capacity (Eq. dm™?), B; is the equivalent fraction of /,
BY is the mole fraction of i and i, j, &, ... are exchangeable cations.
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The equivalent fraction used in the Gapon, and Gaines and Thomaus
equation is identical. The sum of the fractions equals 1

Yp = land 3% =1 (6)

Combination of eqns. (4) and (5) gives

M _ Biiz: )
ﬁi - ﬁf/zf+ﬁj/zj+ﬁk/zk +... (?a)
and
B, Bz, _ | (7b)

T B B B+

Table 1 gives the formulae to calculate exchanger compositions for a given
set of solution activities and exchange coefficients. For example, to obtain §,,
the exchangeable fractions 8, f3,, ... are expressed as 8, with mass action eqns.
(8) or (10). The resulting expressions are entered in the sum Y § = 1, eqn. (6),
to yield §;. The reverse situation, of calculating the solute concentrations for
an exchanger composition, proceeds along the same line, but now all solute
concentrations are expressed as a function of one ion, and subsequently
entered in the sum > z;m, = A,.

The three formulations each give different results, when the exchanger
composition is calculated for a mixture of heterovalent ions, with constant K
and activity coefficient ¢, ¢y or ¢y set to 1 (i.e. for the ideal exchanger).
Figure 1 illustrates this statement for CafNa exchange for two different
normalities in solution. The sclute activities have also been expressed as
equivalent fractions for this ligure

(] = @ = zzm;/A, (13)

where a; is the equivalent fraction in solution, m; is the solute concentration
(mol dm~?), 4, is the total cationic concentration (Eq. dm~3), and the
aqueous activity coeflicient is assumed to be 1.

It may be noted from the formulac in Table 1, that the Gapon equation
allows for the easiest calculation of exchangeable cations from solution data.
The other equations become quadratic or higher order in a multicomponent,
heterovalent solution. A peculiarity with the Gapon convention arises for
multivalent cations (Appelo et al., 1990). The exchange reaction for Ca?* and
Mg** is
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Calculation of exchanger composition (i-X, ;) from activities in a multicomponent sclution

Notation:

z; is the charge of §;

[i1is the solule activity and [i-X] is the exchangeable activity;

Bi. B are the equivalent and mole fraction on exchanger, respectively;
¢, is the activity coeflicient for exchangeable ;

K, = (KN)_] is the exchange coefficient;

(ii;-X) = (-X,) is exchangcable i (Eq. dm~?);

Gapon convention
lJIfZ,- - f‘+j”2j‘X — i];zf'X+ lf‘zj ‘j

e =X | L7 1 R
KS = [Ilr! ][}]”Z- = ﬁf‘ﬁ!b]lk-
U, XU™ Bli1™

[I_]l{zi
(154 KS - 6,06, U1 +KG, bl U< +

(iy,-X) = B; CEC (Eq. dm °).

B, =

Gaines and Thomas convention

Vz i+ 1/ X, e Iz, i-X, +1fz;+j

%0711 ()™ 1)
xor = [ _ B4 1))

XU e ™

(Bi ¢E)ZH’3, [,’] {K;;F)zj _ l
FEIN A 3 9'5, [I-]Zj.:l.
(i‘er-) = ﬁ!- CEC (Eq dm_3)

Vanselow convention

8

®

(10)

(an

Calculation of § identical to Gaines and Thomas, with exchange constant K, but gives mole

fraction g™

Bz,
Z Bz

(in Eq. dm™*)

CEC

(iX,) =

(12)
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Fig. 1. Three options to calenlate the exchanger composition ftom solution concentrations give different
results. K.y, = 2; two solution normalitics, 1%, and 0.0l ¥,

0.5Ca?" + Mg, ;-X—Ca,s-X+0.5Mg>* (14)
which gives

_ [Cays-X]Mg*" " :
Kga\Mg - [M&_5-X][C32+]U'5 (15)

Thus, a linear relation on the exchanger is combined with a square root
relationship in solution. The result is an S-shaped isotherm, that gives a
selectivity reversal since the ion with lower concentration is always favored
even when the exchange coeflicient is 1 (Fig. 2). As such, it is an extreme form
of the Kielland equation (Kielland, 1935) that was recently used by Mansell
et al. (1988) to model the column experiments of Lai et al. (1978), An example
of the effect of the isotherm slope for reaction (14) on column elution has been
reported by Appelo et al. (1990).

EXCHANGE ISOTHERM EFFECTS IN TRANSFORT MODELS

We now discuss the influence of the isotherm slope on transport of ions,
subject to ion exchange. Analytical solutions have been derived for column
elutions in which dispersion and diffusion are neglected, but in which the
isotherm effects are explicitly accounted for, and these are therefore relevant
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Fig. 2. Isotherm for Ca/Mg exchange with strict application of the Gapon convention gives an S-shaped
isotherm for the double charged ions, also when K¢, = 1. Lincar behavior ol Vunselow (or Gaines and
Thomas) convenlion shown for comparison.

to the discussion. The basic theory was developed in the early days of ion
chromatography for binary exchange (DeVault, 1943; Weiss, 1943), and was
subsequently expanded for multicomponent exchange (Sillén, 1951; Klein et
al., 1967; Tondeur, 1969; Helfferich and Klein, 1970; Charbeneau, 1988; Rhee
et al., 1989).

Flushing factors from isotherm slopes

Consider binary 1on exchange in a column of length L, one ion / having
equivalent fractions of, respectively, «; in solution and f, on the exchanger.
Total concentrations are, respectively, A4, in sclution, and CEC on the
exchanger, both expressed in equivalents per decimeter cubed as noted before.
The column initially has a uniform concentration along the length. Conserva-
tion of matter requires

Ju, oo, B,

where u,, ¢, is the pore water flow velocity (m s™'). We can write the change
in exchangeable fraction as a differential relation between (exchangeable) B,
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and (solute) «;

N dB; (0
(a)x B da;‘ (E)x (1?)
which gives in eqn. (16)

CEC dB\ (do\ oa;
(5 ) (&), = —meel) . {19
Implicit differentiation of ;(x, ) = constant gives

&), - () '

When this relation is inserted in eqn. (18), and both sides of the resulting
equation are divided by (de;/0x), the transport velocity u, = (dx/d1), of a
concentration o, is obtained as _

. Un,0
Uy, = 1+CEC % ) . . (20)
A, dy

The equation closely resembles the retardation equation, except that the
slope of the isotherm enters the equation as a variable instead of the
(invariant) distribution coeflicient. The retardation can thus be expressed as
relative velocity u, fuy o. Or, with ¥ the pore volume of the column (m?), it
can be stated in terms of pore volumes

ValVo = unyo /iy, @2l)

which must flush a column (or flowtube) before a given concentration arrives
at the column outlet

v, CEC d§,
=g I = (22)

Equation (22) can be used to construct elution curves when an ion is
displaced by a less tightly bound ion, as illustrated in Fig. 3. The ton A has
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Fig. 3. Effect of exchange isotherm on elution curve: (left} ions A, B and C have given exchange isotherm
with ion j; (right) elution of A, B or C with j can be construcied from the exchange isotherm.

a linear exchange isotherm with the ion j, and the retardation is independent
of concentration (constant) when j is used to elute A from the column. The
slope of the isotherm of the ions B and C (also with respect to j) increases for
smaller fractions of B and C, and the elution of smaller fractions of B or C
with j requires more and more pore volumes V'*. The elution curves for these
two 1ons are hyperboles with a shape dictated by the isotherm stope.

When the eluting ion is more tightly held than the resident cation in the
column, the slope of the isotherm becomes smaller with higher solute fraction
of the eluting ion (the isotherms shown in Fig. 3, left, are mirrored around a
center of symmetry). This implies that higher concentrations of the eluting ion
would need less pore volumes to arrive at the column outlet than lower
concentrations. An impossible situation, of course, and a sharp front develops
according to the integral mass balance

. CECAS
V=4 23)
where J* is the number of pore volumes that the sharp front needs for
traveling down the column.

The integral mass balance can be illustrated for the case where ion j is eluted
with ion B or C. The fronts and their appearance at a column outlet are shown
m Fig. 4. It is assumed that the initial solution in the column contains
fractions of 0.8 Jand 0.2 of either A, B or C, and that the column is eluted with
a solution that has only A, B or C. The ion C has the most strongly curved
isotherm with j, so that only small amounts of j are initially adsorbed when
C is the complementary ion. AB{Aax is therefore smallest with C, and C appears
most rapidly in the effluent of the column (Fig. 4).
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Fig. 4. The conditions of Fig. 3 are inverted, and j is eluled with A, B or C: (left) ion j has given exchange
isotherm with ions A, B and C; note that the axes give «; and f; (right} initial solution containing 80%
of j and 20% ol A, B or C, is cluted with 100% A, B or C; with B and C shock fronts develop, whilc with
A just linear retardation occurs.

In eqns. (22} and (23), ¥* or V° when multiplied with 4,/CEC, are akin to
the “P-condition’ of Sillén (1951), or to the ‘throughput parameter T
(Vermeulen et al., 1984). However, it is easier to consider it a ‘flushing factor’
indicating the number of pore volumes which must flush through the column
to reach a given solute fraction in the effiuent. Any change in adsorbed
quantity (CECdJ), that must occur because of a change in soiution concentra-
tion, requires that this quantity be transported in solution, i.e. ¥* pore
volumes must carry the difference in solute concentration Agde. The flushing
factor is also similar to the distribution coefficient used in the retardation
factor, i.e. R = 1 + V* for one, given concentration. However, the term
‘lushing factor’ is useful for several reasons. First, it embraces a wider field
of application, including differential changes of solid over solute concentra-
tions. Second, it is appropriate for extension to multicomponent interactions
as shown in the next section. Third, the term is suitable for indicating the
number of pore volumes which can flush an aquifer pollutant down to a given
concentration.

Multicomponent ion exchange

The same theory applied to multicomponent ion exchange requires that the
flushing factor be equal for all components simultaneously. This condition is
known as ‘coherence’ (Helfferich and Klein, 1970). For the differential eqn.
(22), it leads to an eigenvalue problem, hinted at already by DeVault (1943),



SOLUTE TRANSPORT WITH MULTICOMPONENT 10N EXCHANGE 99

but first noted by Mangelsdorf (1966)
det(F—V*I) =0 (24)

where F is the Jacobian matrix for the exchanging ions, and 7 is the identity
matrix. We use the standard chemical conventions for solute ions as in
Table 1, so that the Jacobian matrix for a multicomponent solution is written
as

[ 88, P, 2B,
z,0m, z,0m, z,_0m,_,
0B, , :
F=CBC %M 1 (25)
aﬁn—] aﬁrx—l aﬁn-—l
| z,0m, z,0m, Tz, ,0m,_ ]

with m,,m,,...,m,_, the molar concentration of the first, second, ..., n—Ith ion
in solution. Note that the xnth ion is implicitly known 1f cation exchange
capacity and total solute concentration are fixed via eqns. (6) and (13).

The matrix F given by eqn. (25) has (n—1) real eigenvalues if only
homovalent ions are present (Helfferich and Klein, 1970), and also in the
heterovalent case it can be proved that the eigenvalues are real and different.
These eigenvalues correspond to (#— 1) flushing factors for a single solution
composition. In other words, coherence is possible with (n—1) different
velocities. When along a flowline a uniform composition exists initially, and
water of a constant, but different composition is injected, an ordered sequence
in the efuent compositions develops. There will be n plateau zones where
composition is invariant for some time (the initial and injected water composi-
tions are the first and the last plateau), and (#— 1) composition paths which
lead to the plateaux. The existence of the plateaux and connecting paths is
derived in the theory of coherence (Helfferich and Klein, 1970), as well as in
the theory of hyperbolic systems (Lax, 1973; Rhee et al., 1989). A path may
entail a gradual change of composition (alse called ‘broadening’ or a ‘non-
sharpening front’, or a ‘wave’), or it may be abrupt (called a ‘shock’ or a ‘sharp
front"), similar to the case of binary exchange.

The plateaux appear in sequential order in the effluent. The kth plateau has
a kth eigenvalue that is larger than the (k— )th eigenvalue of the preceding,
(k — 1)th plateau. This follows logically from the fact that a larger eigenvalue
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implies a larger flushing factor, or alternatively, a lower velocity of the
composition. The problem is that, except in the case of homovalent exchange
(Helfferich and Klein, 1970), one does not know the plateau composition, nor
the length of a plateau, i.e. where to step ofl on the path to the next plateau.
For three ions there is only one intermediate plateau, and in that case a
combined integration along the two eigenvectors (which represent the paths)
from the upstream and the downstream end, can provide a sclution as shown
by Charbeneau (1988).

Sharp fronts with multicomponent ion exchange

However, when all paths are shocks, a set of equations can be obtained that
allows the calculation of plateau composition as well as plateau length,
irrespective of the number of ions or their charge. Coherence simply implies
that the change in adsorbed ions CECAf in the kth shock is transported by
V¢ pore volumes. It requires the mass balance

CECAB, = Viz,Am,

to be fuifilled for all exchanging 1ons, for ¢ach shock. Rewriting eqn. (23)
gives for (n—1) components in the kth plateau

_ CECIB)isr — ()] o)

Ve = z,[(m)e ) — (m)]

and so on for ( p— 1) plateaux. Furthermore for { p—2) intermediate plateaux
{n—1) equilibrium relations from Table 1 _ (26b)

and electroneutrality in solution and on the exchanger
2zim; = Ay, X(B) =1 (26¢)

so that (n— 1)} (p—1})+(m—1)(p—2)+2(p—2) = 2np—3n—1 equations are
obtained.

Initial and final compositions of solution and exchanger (first and last
plateau) are known. Thus, 2n(p—2) concentrations, and (p—1) flushing
factors add up to 2np—4n+p—1 unknowns. Since the number of plateaux
equals the number of components (p = #) (Helfferich and Klein, 1970:; Lax,
1973}, it makes sense to look for a solution. Klein et al. (1967) derived a
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similar set of equations, but did not apply these in an example with sharp
fronts, and did not consider how the sharpness of the fronts could be proved.

One problem is that enly chemically intuitive arguments can be given to
deduce whether sharp fronts will develop in a given situation with multicom-
ponent, heterovalent ion exchange. However, if initial and final solution
compositions are known, the exchange complex can be calculated for these
compositions, and compared with exchange isotherms for pairs of ions. Shock
fronts will develop when the concentration of the ion that is favored most
strongly by the exchanger increases (cf. Fig. 4). The assumption of sharpness
can be checked, by comparing eigenvalues at both sides of each shock
obtained from eqn. (24) (Lax, 1973). The criteria are easily understood by
noting that the eigenvalues are flushing factors. The flushing factor of the
plateau after a shock must be smaller than of the foregoing plateau, so that
the latter is pushed ahead, i.e.

(Vs 1 < Ve < (Vi _ (27a)

Also, the sequence of shocks must show, in an upstream direction,
increasing sharp front flushing factors ¥, which results in

(Ve > Ve =V s (27b)

where (V;*),,, is the kth flushing factor, of the (k+ 1)th plateau composition,
with flushing factors ordered from small to large. (The sequence is illustrated
in Fig. 7).

The procedure thus involves: (1) calculation of amounts of exchangeable
ions that need to be displaced from the sediment, or must enter the exchange
complex for equilibration with the entering water; (2) inspection of the
exchange 1sotherm to predict whether front sharpening or broadening will
occur; (3) apparently sharp fronts allow the calculation of plateau concentra-
tions and lengths; (4) the assumption of sharpness is checked, by comparison
with flushing factors of the plateau concentrations.

APPLICATION: SHARP FRONTS IN THE VALOCCHI CASE

It i3 of interest to reconsider the tnjection experiment by Valocchi et al.
(1981), which has provided a starting point for many studies and simulations
on aquifer transport with ion-exchange reactions. Valocchi et al. (1981)
injected fresh water in a brackish-water aquifer, and noted a curious pattern
in observation wells of, e.g. Ca concentrations becoming lower than in
groundwater, but also lower than in injection water. The concentration
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TABLE 2

Mass balance calculations for exchanging ions in the injection experiment by Valocchi et al,
(1981): obscrvation well 8§23

lon S Water Sediment

Native Inj. [nitial End DIF
Na 1.0 86.5 9.4 160 56 +104
Mg 1.84 18.2 0.5 142 41 + 101
Ca 2.45 1.1 2.13 153 306 —153

Gaines and Thomas convention, assuming concentration equals activity,

Concentrations in mmoles per decimeter cubed; sediment CEC = 750 mEq. dm

changes could be explained by chromatographic separation through ion
exchange, with Na and Mg being exchanged for Ca from the injected water.

Computer simulations of the field data by several authors proved very
successful, despite the use of different ion-exchange equations and
conventions. Valocchi et al. used the Gaines and Thomas equation, without
considering activity coefficients in solution or on the exchanger surface. Miller
and Benson (1983) used the Vanselow convention; Van Ommen (1985) could
model the data equally well with the Gapon equation and activity coefficient
corrections for solute concentrations, Cederberg et al. (1985) and recently
Charbeneau {1988) returned to the Gaines and Thomas equations as used by
Valocchi et al. (1981).

A direct comparison of differences imposed by different exchange equations
has not yet been made, perhaps because an analytical solution was considered
formally impossible (Valocchi, 1984). It will be shown that the sharp front
analytical solution proposed in the preceding section can be applied.

Mass balance of exchanging ions

Use of eqns. (9), (11) and (12) from Table 1 allows the calculation of the
amounts which need to be exchanged to equilibrate the aquifer sediment with
injected water (step 1 of our procedure). Table 2 shows the results for the
Guaines und Thomas equation as used by Valocchi et al. (1981), however with
their Eq. dm ™" based constant recalculated to moldm™* for the solute ions
{egn. (10) in Table 1)

K&ina = /2Kcun, (Valocchi et al.)

Table 2 shows that the major adaption of the exchangeable ions in the
sediment is an increase of Ca, in return for a loss of Na and Mg. Selected
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results for the three exchange conventions are given in Appendix A, where for
each equation the value of the exchange constant has been chosen to comply
with the same observed exchange complex in equilibrium with (native)
brackish water. Data in Appendix A show that inclusion of solute activity
corrections (calculated here with the Davies equation) has a small (10%) effect
on relative amounts with the Gaines and Thomas convention. Use of activities
or concentrations has not much effect with the other equations either. The
Vanselow equation gives practically identical results as the Gaines and
Thomas convention here, in contrast to the Gapon equation which gives
marked deviations for Mg and Ca.

With all equations the binding strength of the exchanger for the ions is for
Ca > Mg> Na. The adaption of the exchanger complex thus takes a step form
here, with Ca sweeping Mg, which in turn displaces Na. The sharp front
approximation seems valid, with development of three different plateaux.

Plateau concentrations and lengths

Table 2 indicates that considerably more cations are exchangeable in the
sediment (on a mmol dm~* porewater basis) than are present in the injected
water. The implication is that composition of injection water after a short
flowlength is adapted to the exchanger composition (which is still in equi-
librium with brackish water). Initially only dilution takes place and the
exchangeabie ions have not changed; the composition can be calculated with
the formulae from Table 1, and the electroneutrality

My + 2y, T2, ) = Ay

where 4, = 0.01466 Eq. dm ™ in the injected water. All ions can be expressed
in terms of the Ca?' concentration with the appropriate equilibrium relation
from Table 1

[i] = [--XNKcq,[Ca]™*/[Ca-X,]"*)

where {/-X] and [Ca-X,] are known from the brackish water coinposition
(Table 2 and Appendix A). Hence, with the Gaines and Thomas equation,
assuming activity [/] identical to solute concentration

0.818 yCa + 2Ca(1.64 + 1) = 0.01466 (28)

The result is identical for all exchange formulae (all exchange constants
have been adapted to obtain the same exchanger composition in equilibrium
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Fig. 5. Exchangeable cations in the injection experiment of Valocchi ct al. (1981), using different exchange
formulations. The ihree plateaux correspond to: (1) native brackish water; (2) intermediate plateau; (3) final
Injection water equilibrium.

with brackish water); the result only depends on the square root of the
dilution, which appears in the [Na]/,/[Ca]’ exchange equilibrium. Including a
solute activity correction will affect this ratio, and gives, therefore, other
concentrations in the dilution plateau as well.

The lengths of the first and second plateaux, as well as second plateau
concentrations in water and sediment give eight unknowns, for which eight
equations (26) are available. These equations have been simplified as shown
in Appendix B, and solved by Newton-Raphson iteration. The calculated
adaption of the exchange complex is visualized in Fig. 5 (actual numbers are
given in Appendix A). It can be seen that the exchangeable Mg concentration
increases from the first to the second plateau, even though the end stage of
equilibrium with the injected fresh water (the third plateau) requires a
decrease. The decrease takes place in the second plateau, where solute con-
centrations of Mg are higher in the effluent than in the influent. The figure also
shows that the Gapon convention gives marked deviations for exchangeable
Mg-X; and Ca-X, in the last plateau.

Calculated Ca®* and Mg?* concentrations for the Gaines and Thomas
convention were added to the original data presented by Valocchi et al. (1981)
for well 823 (Fig. 6). Breakthrough of Cl1~ in this well occurred after 260 m®
was injected, which means that successive shocks arrive after injection of
260 ¥* m’. The sharp front solution simulates the measured data and the
computer model of Valocchi et al. (1981} remarkably well, although the
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Fig. 6. Concentrations of Ca and Mg in water from observation well 823 during injection of fresh waler
{Valocchi et al., 1981). The results of the sharp front approximation are also shown.

observed fronts are more diffuse because we neglect the effect of dispersion in
our calculation.

Flushing factors of shocks and plateaux

Calculation of the flushing factors (step 4 of our procedure) provides proof
of the validity of the sharp front assumption. Flushing factors {(eigenvalues)
for plateau compositions were determined with an analytical formula for the
Gapon, and Gaines and Thomas convention (cf. Appendix C), and for the
Vanselow convention by numerical differentiation (values are reported in
Appendix A). The results are illustrated in Fig. 7 for the Gaines and Thomas
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Fig. 7. Flushing factors for plateaux and sharp fronts for the Valocchi case {Fig. 6), Gaines and Thomas
convention. With (F*), < T < (J*),, similar for the second sharp front V3, and V%= V}, the criteria for
shock fronts given by Lax (1973) are met.

convention, showing that the sharp front conditions expressed in eqn. (27) are
vahid in this case. Similar results were calculated for the other conventions,
and corroborate the good results of the researchers who used these ion-
exchange equilibria in numerical models. However, one notable exception is
formed by the Gapon equation. Figure 8 indicates that with this equation the
last front has a lower flushing factor than the last plateau, which violates the
sharp front condition that a plateau composition must be able to push the
foregoing sharp front. The reason is related to the selectivity reversal, whereby
Mg, relatively unfavored at a high concentration in the second plateau, is
becoming more and more tavored {with respect to Ca) at the low concentra-
tions of the last plateau (i.e. the injection water composition).

The various ion-exchange conventions give plateau concentrations which

105
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Fig. 8. Flushing factors for plateaux and sharp fronts for the Valocchi case (Fig. 6), Gapon convention.
The criteria for shock fronts are violated in the second front, where (1}, = (V¥ ), > V1. Also note that the
length of the second plaleaw is Far Loo shorl.
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can be considered equal within the experimental error of cation analysis in a
field experiment, estimated here to be about 10°%. The Gaines and Thomas,
and Vanselow formulae give even closer agreement, whether or not solution
activity corrections are included. The differences in mass balance (Fig. 5) are
thus equalized in the ion chromatographic displacement. This supports the
fine agreement found by Miller and Benson (1983), using the Vanselow
convention, with the computer simulation by Valocchi et al. (1981) using the
Gaines and Thomas equation. Although the concentrations calculated with
the Gapon equation agree with those observed, the sharp front approximation
is not valid, and (V*), of the second plateau is much too small. Van Ommen
(1985) in his numerical model employed a hybrid form of the Gapon and Kerr
equations, with exchange among Ca and Mg according to the convention
of Kerr (1928). He also used different water compositions near the injection
well, and observation well S23, in agreement with the data presented by
Valocchi et al. (1981). However, these water compositions lead to initially
greater amounts of exchangeable Mg than in other simulations, and this may
have balanced the particular effect of selectivity reversal associated with the
Gapon convention.

CONCLUSIONS

It was shown that the form of the exchange isotherm can influence the
transport of ions affected by ion-exchange processes. The different
conventions for ion exchange which are commonly employed, lead to different
isotherm slopes for binary exchange pairs, and thus bear upon transport
calculations as well. The effects should be duly considered when ion exchange
is incorporated in transport models. This conclusion is especially valid for
non-sharpening (broadening) fronts, whereas for sharp fronts dissimilar
plateau lengths may be found. A flushing factor was defined that indicates the
number of pore volumes that must flush a column or a flowline before a given
concentration arrives at the column end. The flushing factor can be used to
construct elution curves with binary exchange. Flushing factors similarly
indicate number of pore volumes that must flush a column before different
compositions arrive in the multicomponent case. An analytical solution for
sharp fronts has been derived that allows for an easy intercomparison of the
exchange equations for a multicomponent, heterovalent system. It can
accurately describe the concentration changes in the injection experiment of
Valocchi et al. (1981). It appears that the Gaines and Thomas, and the
Vanselow conventions give near-identical results. When several multivalent
ions are present, the Gapon equation easily leads to selectivity reversal,
whereas the experimental data do not show this phenomenon. The application
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of solute activity corrections has marginal effects on the relative amounts that
need to be displaced from the sediment.
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APPENDIX A
Plateau concentrations and lengths, fresh water injected in brackish water

aquifer (Valocchi et al., 1981). Observation well S23. Concentrations in mmol
dm~* in porewater

Plateau Concentrations Sharp (£ m' inj) Differential
() (v

Na Mg Ca

(a) Gaines and Thomas convention (solute activity = concentration}; used by Valocchi et al.,

1981; Cederberg et al., 1985, Charbeneau, 1988

0, Water 86.5 18.2 11.1 10.8/2.8
sediment 160.60 141.59 153.11

1 (260)
1,  Water 13.28 0.43 0.26 459/61.2
sediment  160.60 14159  153.11
25.3 (6843)
2, Water 947 1.67 0.92 145/12.3

sediment 6418 17300  169.91
1132 (29432)
3,  Water 94 0.5 2.13 88.6/10.9
sediment 56.35 4055  306.27

(b} Gaines and Thomas convention (solute activity calculated with Davies equation from ionic
strength I = T~ (2} +2,)12)
I, Water 13.60 0.33 0.20 599{76.5
sediment 160.60 141.59 153.11
254 (6864)
2, Water 9.46 1.68 0.92 146/10.7
sediment 5542 175.83 171.46
114.5 (29770}
3, Water 94 0.5 2.13 89.6/9.5

{c) Gapon convention (solute activity calculated with Davies equation); used by Van Ommen,
1985
1, Water 13.60 0.33 0.20 302/{67.6
sediment 160.60 141.59 153.11 .
24.1 (6526)
2, Water 944 1.77 0.34 76.4{11.1
sediment 55.73 180.00 167.13
68.3 (17758}
3, Water 24 0.5 213 82.3/10.7
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APPENDIX A (continued)

Platcan Concentrations Sharp (Z m® inj.) Differential
(V) =

Na Mg Ca

(d) Vanselow convention (solute activity = concentration); used by Miller and Benson (1983 )
1, Water 13.28 043 0.26 459/66.4
sediment 160.60 141.59 153.11
26.2 (7075)
2, Water 9.47 1.67 0.92 146f12.2
sediment 60.71 174.19 170.46
113.8 (29588)
3, Walter 9.4 0.5 2.13 88.5/10.6

APPENDIX B: SHARP FRONT SCLUTION FOR FRESH WATER INJECTED IN
BRACKISH WATER AQUIFER

For six unknown concentrations in the second plateau, and for two plateau
lengths, there are eight equations obtained from eqn. (26)

e _ CEC [(B)rir —(B)a) _ (X, )y — (X)),
" z[(m;)p 1 — ()] z(m), 1 —(my),]

where { = Na, Mg, and » = 1, 2. Furthermore {assuming [{] = m,, Gaines
and Thomas convention)

X, = CEC'~Pm { ,md[(ca'XZ)]" } (26(b))

me,

(26(a))

where i = Na, Mg; and electroneutrality in solution and on the exchanger
Yz, = Ay, and (X} = CEC (26(c))

where i = Na, Mg, Ca.

The concentrations in the dilution plateau and in the injected water are
known, i.e. (m) and (i-X},, where § = Na, Mg, Ca, and n = 1,3. We have
Kugna = 1.84, and Ko, = 2.45, and combine to eliminate Na and Mg
concentrations in the second plateau

[(V*)2(mn, ) — (Na-X);1 % [2.45(mc, ) (7*), — (0.75(Ca-X,),)'"*] =

[(°), ()1 — (Na-X )y ] [2.45(mc, 1 (V*), — (0.75(Ca-X,),)' 7]
(B1)
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(V") 2(rmpg)s —(Mg-X, ] x [2(me, ), (V) —(1.84/2.45)° (Ca-X,),] =
[(V*) 2myg)y — (Mg-X5), ] X [20me, ), (V*), —(1.84/2.45)(Ca- X, ), ]

(B2)
(V) 2(me,) —(me,),] = (Ca-X,), —(Ca-X,), (B3)
(V*h2(me,); —(mc, )s] = (Ca-X;), —(Ca-X;), (B4)

The four equations have been solved with Newton-Raphson iteration; the
additional iteration for solute activity corrections can be introduced straight-
forwardly.

APPENDIX C: EQUATIONS FOR CALCULATING THE PLATEAU FLUSHING
FACTOR

The differential plateau flushing factors V'*, can be calculated from eqn. (4)
by numerical differentiation. However, for a system of three cations having
either Gapon or Gaines-Thomas exchange-relationship, a simpler procedure
15 available as shown by Pope et al. (1978). The Gaines and Thomas formula
(egn. (10)) is written in logarithmic form:

N S | T 1. | S
Zin[f-ﬁl,] - ZIH[I‘ = In(Ky; )+;jlﬂ[J-Xz,] - ;jlﬂ[l ] (C1)
[t is assumed that the activity-coeflicients in solution (y;;} and on exchanger
(¢:,;) are constant, and are incorporated in the exchange constantkK’. Then
[I] = m, [1-)‘/2;] = ﬁ:’: (E = !9J)~ and K; = Kg’T((I)j/?j)”z’(yi'/(ybi)”zr.' These
terms are replaced mn (C1), which is differentiated to obtain

dg, 1 _ dg; 1
(ﬂ,-z,- x dm, - ijj)dm,- B (ﬁjzj x dmj B %)dmj €2

With z,dm;, = A,dw;, and eqn. (22), we can replace df,/(z,dm.) by V*/CEC,
(i = ij,k,...), and solve for dm,

LA
CEC  z;m, '
dm, — %d% i=ijk... (C3)
B.CEC  z,m,

Electroneutrality and a constant normality A4, of the solution require ¥ z,dm,
= {}, which according to (C3) is true when

x (ﬁ,-z,-lgEC - z%tn,,)_] =0 (C4)




